ποΈ Banner 282/367
π§ MLOps | βοΈ Automation | π SQL | π Data Science | π Experiment Tracking | π Tableau
β‘ How it works (architecture deep-dive π¬ for engineers)
This profile is a self-updating MLOps demo β a living portfolio showcasing production-grade automation.
- π€ Banner rotation: 367 GIFs Β· natural sorting Β· cache-busted CDN URLs
- π§© Dynamic insights: Context-aware NLG (time/season/DOW algorithms)
- β±οΈ Next Update badge: Shields.io endpoint Β· HLS gradient Β· sub-minute precision
- π‘ Observability: JSONL telemetry Β· heartbeat pings Β· state persistence
- βοΈ Zero-touch ops: 5475+ runs Β· 133 mutations Β· idempotent commits
| File | Version | Description |
|---|---|---|
| update_readme.py | Banner engine + NLG + JSONL pipeline | |
| build_next_badge.py | HLS gradient renderer + countdown |
| Workflow | Schedule | Status |
|---|---|---|
| Auto Update README | Daily 12:15 UTC | |
| Next Update Badge | Every 20min | |
| CI/CD Pipeline | On push/PR |
π View all runs β
.
ββ update_log.jsonl # CI run timeline (1 JSON per run: ts_utc, run_id, run_number, sha, banner_*, insight_*)
ββ update_log.txt # Grep-friendly mirror of update_log.jsonl (ts UTC, run=β¦, sha=β¦; rolling tail)
ββ badges/
β ββ next_update.json # Live Shields.io badge state (label, message like '~14h 35m', color bucket)
β ββ next_update_log.jsonl # Badge countdown snapshots (ts, next_utc, minutes_left, message, color, jitter params)
β ββ next_update_log.txt # Human-readable badge ETA tail ([ts] color=β¦ msg='β¦' next_utc=β¦ mins_left=β¦)
β ββ github_followers.json # Endpoint payload for the Followers badge (schemaVersion/label/message/color)
β ββ github_stars.json # Endpoint payload for the Stars badge
β ββ total_updates.json # Endpoint payload for the Updates badge
ββ .ci/
ββ heartbeat.log # GitHub Actions heartbeat ledger (Updated on / Triggered by / Commit SHA / Run ID / Run number)
ββ update_count.txt # Monotonic mutation counter (powers the Β«N mutations shippedΒ» tagline)
π Browse logs:
π update_log.jsonl Β·
π update_log.txt Β·
π heartbeat.log Β·
π’ update_count.txt
β±οΈ next_update.json Β·
π‘ next_update_log.jsonl Β·
π next_update_log.txt
π₯ github_followers.json Β·
β github_stars.json Β·
π total_updates.json
- π Learning @ SuperDataScience
- πͺ Focus: MLOps | SQL | Automation
- β³ Over 2 years of continuous learning
| π Platform | π Link |
|---|---|
| π§ GitHub | Evgenii Matveev |
| π Portfolio | Data Science Portfolio |
| π LinkedIn | Evgenii Matveev |
π« AI Copilot Ecosystem
| Assistant | Role | Usage |
|---|---|---|
| ChatGPT 5.1 | Core copilot for architecture & automation | Rapid execution |
| Claude Sonnet 4.5 | Contextual planner & strategic reasoner | Long-range thinking |
π‘ Note: Dual-Copilot Workflow
This ecosystem operates as a dual-copilot workflow β two AI systems working in synergy:
- ChatGPT β architecture, reasoning, documentation
- Claude Sonnet 4.5 β long-context planning & strategic alignment
This dual-copilot system balances speed and depth β
ChatGPT executes and refines Β· Claude plans and connects.
Together they form my AI-powered engineering loop for continuous innovation.
β¨ Optimized for precision, powered by automation, evolving through insight.
π€ Automation Logs
πͺ Run Meta (click to expand)
- π Updated (UTC): 2025-12-08 13:14 UTC
- π€ Run: #5568 β open run
- 𧬠Commit: a824b80 β open commit
- β»οΈ Updates (total): 189
- π Workflow: Auto Update README Β· Job: update-readme
- β¨ Event: schedule Β· π§βπ» Actor: evgeniimatveev
- π Schedule: 24h_5m
- π Banner: 282/367
ποΈRecent updates (last 5)
| Time (UTC) | Run | SHA | Banner | Event/Actor | Insight |
|---|---|---|---|---|---|
| 2025-12-08 13:14:39 | 5568 | a824b80 |
282/367 (282.gif) | schedule/evgeniimatveev | π‘ SQL β’ PYTHON β’ PIPELINES β’ RUN #5568 β Plan the roadmap; align data and product π§ | Start your week strong! π Ship a thin slice: Aβ¦ |
| 2025-12-07 13:01:16 | 5567 | ad29faf |
281/367 (281.gif) | schedule/evgeniimatveev | π‘ BUILD β’ MEASURE β’ LEARN β’ RUN #5567 β REDUCE NOISE, RAISE SIGNAL π‘ | PREP FOR AN MLOPS-FILLED WEEK! β³ PROFILE QUERIES, ADD INDEXESβ¦ |
| 2025-12-06 12:58:28 | 5566 | f6e5470 |
280/367 (280.gif) | schedule/evgeniimatveev | π‘ SQL β’ PYTHON β’ PIPELINES β’ RUN #5566 β Plan Roadmaps With Calm Clarity π§ | Weekend Automation Vibes! π Review Metrics, Cut Toil, Aβ¦ |
| 2025-12-05 13:04:16 | 5565 | d30b463 |
279/367 (279.gif) | schedule/evgeniimatveev | π‘ AUTOMATE EVERYTHING β’ RUN #5565 β Reduce Noise, Raise Signal π‘ | Wrap It Up Like A Pro! β‘ Tighten Slas, Widen Observability, Reducβ¦ |
| 2025-12-04 13:06:40 | 5564 | 0376401 |
278/367 (278.gif) | schedule/evgeniimatveev | π‘ SHIP SMALL, SHIP OFTEN β’ RUN #5564 β Plan roadmaps with calm clarity π§ | Test, iterate, deploy! π Validate data contracts before tβ¦ |
Night-mode palettes Β· Daily AβG theme rotation Β· Fully automated via GitHub Actions
| π§© Workflow | βοΈ Automation | π Insights |
|---|---|---|
| Design β Build β Scale | Deploy CI/CD with intelligence | Measure β Learn β Improve |
- βοΈ Automate end-to-end ML pipelines (train β eval β deploy)
- π Track experiments with MLflow & W&B; analyze runs via PostgreSQL/SQL
- π Build stakeholder dashboards in Tableau / Power BI
π€ MLOPS Insight: π‘ SQL β’ PYTHON β’ PIPELINES β’ RUN #5568 β Plan the roadmap; align data and product π§ | Start your week strong! π Ship a thin slice: API β model β dashboard π° π






